首页> 外文OA文献 >The Application of Principal Component Analysis Using Fixed Eigenvectors to the Infrared Thermographic Inspection of the Space Shuttle Thermal Protection System
【2h】

The Application of Principal Component Analysis Using Fixed Eigenvectors to the Infrared Thermographic Inspection of the Space Shuttle Thermal Protection System

机译:固定特征向量的主成分分析在航天飞机热保护系统红外热像仪检查中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Nondestructive Evaluation Sciences Branch at NASA s Langley Research Center has been actively involved in the development of thermographic inspection techniques for more than 15 years. Since the Space Shuttle Columbia accident, NASA has focused on the improvement of advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can be used to inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. A typical implementation of PCA is when the eigenvectors are generated from the data set being analyzed. Although it is a powerful tool for enhancing the visibility of defects in thermal data, PCA can be computationally intense and time consuming when applied to the large data sets typical in thermography. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view), since the calculation of the eigenvectors is now governed by the presence of the defect, not the good material. To increase the processing speed and to minimize the negative effects of large defects, an alternative method of PCA is being pursued when a fixed set of eigenvectors is used to process the thermal data from the RCC materials. These eigen vectors can be generated either from an analytic model of the thermal response of the material under examination, or from a large cross section of experimental data. This paper will provide the details of the analytic model; an overview of the PCA process; as well as a quantitative signal-to-noise comparison of the results of performing both embodiments of PCA on thermographic data from various RCC specimens. Details of a system that has been developed to allow insitu inspection of a majority of shuttle RCC components will be presented along with the acceptance test results for this system. Additionally, the results of applying this technology to the Space Shuttle Discovery after its return from flight will be presented.
机译:美国国家航空航天局兰利研究中心的无损评估科学处已积极参与热成像检查技术的开发,已有15年以上的历史。自哥伦比亚号航天飞机事故以来,美国国家航空航天局一直致力于改进包括轨道飞行器机翼前缘的增强碳碳(RCC)面板的先进NDE技术。在RCC的检查中已使用了各种非破坏性检查技术,但热成像技术已成为替代传统方法的有效检查方法。与通常需要在换能器和材料之间使用耦合介质的超声技术相比,热成像是一种非接触式检查方法。像放射线照相技术一样,热像仪可用于检查大面积区域,但具有最小的安全隐患和单面测量能力的优点。主成分分析(PCA)已被证明可有效减少热成像NDE数据。 PCA的典型实现是从要分析的数据集生成特征向量。尽管PCA是增强热数据中缺陷可视性的强大工具,但将PCA应用于热成像中典型的大型数据集时,计算量很大且耗时。另外,当存在非常大的缺陷(主导视场的缺陷)时,PCA可能会遇到问题,因为特征向量的计算现在由缺陷而不是好材料的存在决定。为了提高处理速度并使最大缺陷的负面影响最小化,当使用固定的特征向量集来处理RCC材料的热数据时,正在寻求一种PCA替代方法。这些特征向量既可以根据所检查材料的热响应分析模型生成,也可以根据实验数据的较大横截面生成。本文将提供分析模型的详细信息。 PCA流程概述;以及对来自各种RCC样本的热成像数据执行PCA的两个实施方案的结果的定量信噪比较。将介绍已开发的系统的详细信息,并允许对该系统的验收测试结果进行现场检查,以检查大部分航天飞机RCC组件。此外,还将介绍将这项技术从飞行返回后应用于航天飞机发现的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号